If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-11x=3
We move all terms to the left:
10x^2-11x-(3)=0
a = 10; b = -11; c = -3;
Δ = b2-4ac
Δ = -112-4·10·(-3)
Δ = 241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-\sqrt{241}}{2*10}=\frac{11-\sqrt{241}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+\sqrt{241}}{2*10}=\frac{11+\sqrt{241}}{20} $
| x+(2x+3)=84 | | 3(x-2)-4(x+2)=40 | | 9x+12+7x+6=22 | | 3/4x+5=1/2(×-8) | | 26=1+3x | | k-19=34 | | 4(x+1)+6=24 | | x+66+x+86=50 | | 3(x-5)-4x=1 | | 5x2+56=6x2+48 | | 40=1.5*t | | 7x-60=x+54 | | 2x+157x+5=x | | (11x-7)=65 | | a-(-3)=-1 | | 6x+5−2x=−19 | | 1/6(x-1)=1/3(3x+2) | | c-(-4)=-2 | | 7x-60=x=54 | | -9d=-16 | | 3x+-3=2x | | -9d=16 | | 4(x+7)=9(x-7)+22 | | 16x+50=21x | | 8=t+4 | | 8n^2+49n-49=0 | | b-16=-23 | | 16x=50=21x | | 3/4(-8j+24)=2(5j+1) | | 4x+8/5x-1=-6 | | (3x+10=4x-10) | | n/5+6=-4 |